Comparison of point-of-care versus central laboratory measurement of electrolyte concentrations on calculations of the anion gap and the strong ion difference.

نویسندگان

  • Hiroshi Morimatsu
  • Jens Rocktäschel
  • Rinaldo Bellomo
  • Shigehiko Uchino
  • Donna Goldsmith
  • Geoffrey Gutteridge
چکیده

BACKGROUND Clinicians calculate the anion gap (AG) and the strong ion difference (SID) to make acid-base diagnoses. The technology used is assumed to have limited impact. The authors hypothesized that different measurement technologies markedly affect AG and SID values. METHODS SID and AG were calculated using values from the point-of-care blood gas and electrolyte analyzer and the central hospital laboratory automated blood biochemistry analyzer. Simultaneously measured plasma sodium, potassium, and chloride concentrations were also compared. RESULTS Mean values for central laboratory and point-of-care plasma sodium concentration were significantly different (140.4 +/- 5.6 vs. 138.3 +/- 5.9 mm; P < 0.0001), as were those for plasma chloride concentration (102.4 +/- 6.5 vs. 103.4 +/- 6.0 mm; P < 0.0001) but not potassium. Mean AG values calculated with the two different measurement techniques differed significantly (17.6 +/- 6.2 mEq/l for central laboratory vs. 14.5 +/- 6.0 mEq/l for point-of-care blood gas analyzer; P < 0.0001). Using the Stewart-Figge methodology, SID values also differed significantly (43.7 +/- 4.8 vs. 40.7 +/- 5.6 mEq/l; P < 0.0001), with mean difference of 3.1 mEq/l (95% limits of agreement, -3.4, 9.5 mEq/l). For 83 patients (27.6%), differences in AG values were as high as 5 mEq/l or more, and for 46% of patients whose AG value was outside the reference range with one technology, a value within normal limits was recorded with the other. CONCLUSIONS Results with two different measurement technologies differed significantly for plasma sodium and chloride concentrations. These differences significantly affected the calculated AG and SID values and might lead clinicians to different assessments of acid-base and electrolyte status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement and Modeling of Mean Ionic Activity Coefficient in Aqueous Solution Containing NaNO3 and Poly Ethylene Glycol

Potentiometric investigation on {H2O+NaNO3+PEG1500} mixtures were made at T=308.15K, using electrochemical cells with two ion-selective electrodes, (Na+ glass) as the cation ion-selective electrode against (NO3- solvent-polymer PVC) as the anion ion-selective electrode. The mean ionic activity coefficients of NaNO3 were measu...

متن کامل

Study the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry

The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...

متن کامل

Interpretation of In-air Output Ratio of Wedged Fields in Different Measurement Conditions

Introduction: The head scatter factor (Sc) is one of the important parameters for monitor unit (MU) calculation. There are multiple factors that impact the Sc values, such as, head structures, back scattering in to dose monitoring chambers, wedges and so on. This study aimed to investigate the variations of SC with different build-up cap materials, wall thickness, Source to ...

متن کامل

Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis

INTRODUCTION Metabolic acidosis is the most frequent acid-base disorder in the intensive care unit. The optimal analysis of the underlying mechanisms is unknown. AIM To compare the conventional approach with the physicochemical approach in quantifying complicated metabolic acidosis in patients in the intensive care unit. PATIENTS AND METHODS We included 50 consecutive patients with a metabo...

متن کامل

Ortho-phenylenediamine Based Bis-ureas as the Ion Selective Sensors; A QM/MD Study

Density functional theory dispersion corrected (DFT-D3)calculations and molecular dynamic (MD) simulation were applied to investigate the sensing ability of four types of receptors (RCs) composed of the ortho-phenylenediamine based bis-ureas for selective complexation with the anions such as Cl–, Br–, OAC–, PhCO2–, H2PO4– and HSO4– in the gas phase and DMSO. On the basis of the data obtained fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2003